Homeecolotop lids_for_waste_bins
conservation of waste bins reuse waste can lid for garbage and recycling containers garbage and recycling container lids recycling plastic garbage bin outdoor garbage receptacle independent collection outdoor garbage receptacle lid for outdoor garbage bin garbage and recycle containers lid Recycle bin
lid for garbage and recycle receptacles
extend the life of waste receptacle
government assistance for business
extend the life of waste receptacles
a compost box
lid for garbage and recycling bin

Lids for waste bins


garbage and recycling containers lids lid for waste bin  reuse waste receptacles home composter recyclable plastics collection prolong the life of outdoor garbage containers prolong the life of outdoor garbage receptacles trash receptacles lid lid for waste can garbage reduction conservation of waste can recycling receptacle lids

In the strictest sense, recycling of a material would produce a fresh supply of the same material—for example, used office paper would be converted into new office paper, or used foamed polystyrene into new polystyrene. However, this is often difficult or too expensive (compared with producing the same product from raw materials or other sources), so "recycling" of many products or materials involves their reuse in producing different materials (e.g., paperboard) instead. Another form of recycling is the salvage of certain materials from complex products, either due to their intrinsic value (e.g., lead from car batteries, or gold from computer components), or due to their hazardous nature (e.g., removal and reuse of mercury from various items). Critics dispute the net economic and environmental benefits of recycling over its costs, and suggest that proponents of recycling often make matters worse and suffer from confirmation bias. Specifically, critics argue that the costs and energy used in collection and transportation detract from (and outweigh) the costs and energy saved in the production process; also that the jobs produced by the recycling industry can be a poor trade for the jobs lost in logging, mining, and other industries associated with virgin production; and that materials such as paper pulp can only be recycled a few times before material degradation prevents further recycling. Proponents of recycling dispute each of these claims, and the validity of arguments from both sides has led to enduring controversy.

In some U.S. states, a program called RecycleBank pays people to recycle, receiving money from local municipalities for the reduction in landfill space which must be purchased. It uses a single stream process in which all material is automatically sorted.

 

Fiscal efficiency is separate from economic efficiency. Economic analysis of recycling includes what economists call externalities, which are unpriced costs and benefits that accrue to individuals outside of private transactions. Examples include: decreased air pollution and greenhouse gases from incineration, reduced hazardous waste leaching from landfills, reduced energy consumption, and reduced waste and resource consumption, which leads to a reduction in environmentally damaging mining and timber activity. About 4,000 minerals are known, of these only a few hundred minerals in the world are relatively common. At current rates, current known reserves of phosphorus will be depleted in the next 50 to 100 years. Without mechanisms such as taxes or subsidies to internalize externalities, businesses will ignore them despite the costs imposed on society. To make such nonfiscal benefits economically relevant, advocates have pushed for legislative action to increase the demand for recycled materials. The United States Environmental Protection Agency (EPA) has concluded in favor of recycling, saying that recycling efforts reduced the country's carbon emissions by a net 49 million metric tonnes in 2005. In the United Kingdom, the Waste and Resources Action Programme stated that Great Britain's recycling efforts reduce CO2 emissions by 10–15 million tonnes a year. Recycling is more efficient in densely populated areas, as there are economies of scale involved.

Beverage bottles were recycled with a refundable deposit at some drink manufacturers in Great Britain and Ireland around 1800, notably Schweppes. An official recycling system with refundable deposits was established in Sweden for bottles in 1884 and aluminium beverage cans in 1982, by law, leading to a recycling rate for beverage containers of 84–99 percent depending on type, and average use of a glass bottle is over 20 refills.

 

In certain areas there is also a recycling service, often with one or more dedicated bins intended to receive items that can be recycled into new products. These bins are sometimes separated into different categories (usually represented by colours) which determine what materials can be inserted into the bin. The contents of the bins are taken to a recycling plant to be processed, and there are various systems for recycling-bin collection: single-bin-combined stream systems, multiple-bin systems, and cyclic collections with different materials collected on different days.

Home | History | Product Concept | Benefits | Target Market | Characteristics | Specifications
Clients | Distributors | Products |  Contact Us | Grants | News | Site Plan | Français