Homeecolotop recyclage_plastique
lid for garbage and recycle containers conservation of outdoor garbage bins prolong the life of trash can paper recovery garbage cans compost montreal recycling garbage container lid reuse trash bins outdoor garbage receptacles trash bin garbage and recycling bins waste bin lids
lid for recycling garbage bins
recycling receptacles lids
Recycle bin
recycling garbage cans lid
conservation of trash can
tray trash

Recyclage plastique

recycling bin Montreal lid for recycle garbage bins tray trash reuse garbage bins rotary composter recycling receptacles lid recycling can lids reuse waste receptacle garbage containers lid reuse waste container reusing wastebasket garbage and recycling receptacles lids

In the strictest sense, recycling of a material would produce a fresh supply of the same material—for example, used office paper would be converted into new office paper, or used foamed polystyrene into new polystyrene. However, this is often difficult or too expensive (compared with producing the same product from raw materials or other sources), so "recycling" of many products or materials involves their reuse in producing different materials (e.g., paperboard) instead. Another form of recycling is the salvage of certain materials from complex products, either due to their intrinsic value (e.g., lead from car batteries, or gold from computer components), or due to their hazardous nature (e.g., removal and reuse of mercury from various items). Critics dispute the net economic and environmental benefits of recycling over its costs, and suggest that proponents of recycling often make matters worse and suffer from confirmation bias. Specifically, critics argue that the costs and energy used in collection and transportation detract from (and outweigh) the costs and energy saved in the production process; also that the jobs produced by the recycling industry can be a poor trade for the jobs lost in logging, mining, and other industries associated with virgin production; and that materials such as paper pulp can only be recycled a few times before material degradation prevents further recycling. Proponents of recycling dispute each of these claims, and the validity of arguments from both sides has led to enduring controversy.

The recycling of waste electrical and electronic equipment in India and China generates a significant amount of pollution. Informal recycling in an underground economy of these countries has generated an environmental and health disaster. High levels of lead (Pb), polybrominated diphenylethers (PBDEs), polychlorinated dioxins and furans, as well as polybrominated dioxins and furans (PCDD/Fs and PBDD/Fs) concentrated in the air, bottom ash, dust, soil, water and sediments in areas surrounding recycling sites. Critics also argue that while recycling may create jobs, they are often jobs with low wages and terrible working conditions. These jobs are sometimes considered to be make-work jobs that don't produce as much as the cost of wages to pay for those jobs. In areas without many environmental regulations and/or worker protections, jobs involved in recycling such as ship breaking can result in deplorable conditions for both workers and the surrounding communities.

Container deposit legislation involves offering a refund for the return of certain containers, typically glass, plastic, and metal. When a product in such a container is purchased, a small surcharge is added to the price. This surcharge can be reclaimed by the consumer if the container is returned to a collection point. These programs have been very successful, often resulting in an 80 percent recycling rate. Despite such good results, the shift in collection costs from local government to industry and consumers has created strong opposition to the creation of such programs in some areas.

The amount of energy saved through recycling depends upon the material being recycled and the type of energy accounting that is used. Emergy (spelled with an m) analysis, for example, budgets for the amount of energy of one kind (exergy) that is required to make or transform things into another kind of product or service. Using emergy life-cycle analysis researchers have concluded that materials with large refining costs have the greatest potential for high recycle benefits. Moreover, the highest emergy efficiency accrues from systems geared toward material recycling, where materials are engineered to recycle back into their original form and purpose, followed by adaptive reuse systems where the materials are recycled into a different kind of product, and then by by-product reuse systems where parts of the products are used to make an entirely different product.

Every year, millions of tons of materials are being exploited from the earth's crust, and processed into consumer and capital goods. After decades to centuries, most of these materials are "lost". With the exception of some pieces of art or religious relics, they are no longer engaged in the consumption process. Where are they? Recycling is only an intermediate solution for such materials, although it does prolong the residence time in the anthroposphere. For thermodynamic reasons, however, recycling cannot prevent the final need for an ultimate sink.

Home | History | Product Concept | Benefits | Target Market | Characteristics | Specifications
Clients | Distributors | Products |  Contact Us | Grants | News | Site Plan | Français