Homeecolotop recycler
compost receptacle recycling garbage receptacle lid prolong the life of garbage bin lid for recycle receptacles recycle paper conservation of trash container recycle garbage and recycle bins lid recyclable materials collection Recycle bin recycling garbage bin sustainable development blog
recycling aluminum
prolong the life of garbage receptacle
recyclable matters
ecological
recycle garbage receptacle lids
recycle container lids

Recycler


conservation of trash bin conservation of outdoor garbage bin garbage and recycling bins recuperation separate collection of waste prolong the life of garbage containers waste container separate collection lid for outdoor garbage bins recycling bins lid recycle garbage cans lid prolong the life of garbage receptacle

It is difficult to determine the amount of energy consumed or produced in waste disposal processes in broader ecological terms, where causal relations dissipate into complex networks of material and energy flow. For example, "cities do not follow all the strategies of ecosystem development. Biogeochemical paths become fairly straight relative to wild ecosystems, with very reduced recycling, resulting in large flows of waste and low total energy efficiencies. By contrast, in wild ecosystems, one population’s wastes are another population’s resources, and succession results in efficient exploitation of available resources. However, even modernized cities may still be in the earliest stages of a succession that may take centuries or millennia to complete.":720 How much energy is used in recycling also depends on the type of material being recycled and the process used to do so. Aluminium is generally agreed to use far less energy when recycled rather than being produced from scratch. The EPA states that "recycling aluminum cans, for example, saves 95 percent of the energy required to make the same amount of aluminum from its virgin source, bauxite." In 2009 more than half of all aluminium cans produced came from recycled aluminium.

Every year, millions of tons of materials are being exploited from the earth's crust, and processed into consumer and capital goods. After decades to centuries, most of these materials are "lost". With the exception of some pieces of art or religious relics, they are no longer engaged in the consumption process. Where are they? Recycling is only an intermediate solution for such materials, although it does prolong the residence time in the anthroposphere. For thermodynamic reasons, however, recycling cannot prevent the final need for an ultimate sink.

Economist Steven Landsburg has suggested that the sole benefit of reducing landfill space is trumped by the energy needed and resulting pollution from the recycling process. Others, however, have calculated through life cycle assessment that producing recycled paper uses less energy and water than harvesting, pulping, processing, and transporting virgin trees. When less recycled paper is used, additional energy is needed to create and maintain farmed forests until these forests are as self-sustainable as virgin forests.

Beverage bottles were recycled with a refundable deposit at some drink manufacturers in Great Britain and Ireland around 1800, notably Schweppes. An official recycling system with refundable deposits was established in Sweden for bottles in 1884 and aluminium beverage cans in 1982, by law, leading to a recycling rate for beverage containers of 84–99 percent depending on type, and average use of a glass bottle is over 20 refills.

 

The glass, lumber, wood pulp, and paper manufacturers all deal directly in commonly recycled materials. However, old rubber tires may be collected and recycled by independent tire dealers for a profit.

Home | History | Product Concept | Benefits | Target Market | Characteristics | Specifications
Clients | Distributors | Products |  Contact Us | Grants | News | Site Plan | Français