Homeecolotop home_compost
recycle receptacle garbage receptacles lid extend the life of garbage containers garbage and recycle receptacles recycling can lid garbage container lids waste bins recycling bin conservation of outdoor garbage can recovery canister industrial composter prolong the life of outdoor garbage containers
reusing waste bin
tray waste
lid for recycle cans
conservation of garbage bins
composting bins
extend the life of waste bins

Home compost


lid for garbage and recycling can lid for trash cans garbage and recycling receptacles lid garbage cans lids extend the life of trash receptacles lids for waste bins garbage and recycle receptacle lid home composter garbage and recycling cans lids prolong the life of outdoor garbage containers reuse outdoor garbage containers lid for recycling garbage receptacle

In order to meet recyclers' needs while providing manufacturers a consistent, uniform system, a coding system is developed. The recycling code for plastics was introduced in 1988 by plastics industry through the Society of the Plastics Industry, Inc. Because municipal recycling programs traditionally have targeted packaging—primarily bottles and containers—the resin coding system offered a means of identifying the resin content of bottles and containers commonly found in the residential waste stream.

Origins of recycpling
Recycling has been a common practice for most of human history, with recorded advocates as far back as Plato in 400 BC. During periods when resources were scarce, archaeological studies of ancient waste dumps show less household waste (such as ash, broken tools and pottery)—implying more waste was being recycled in the absence of new material.

Other studies have shown that recycling in itself is inefficient to perform the “decoupling” of economic development from the depletion of non-renewable raw materials that is necessary for sustainable development. The international transportation or recycle material flows through "...different trade networks of the three countries result in different flows, decay rates, and potential recycling returns." As global consumption of a natural resources grows, its depletion is inevitable. The best recycling can do is to delay, complete closure of material loops to achieve 100 percent recycling of nonrenewables is impossible as micro-trace materials dissipate into the environment causing severe damage to the planets ecosystems. Historically, this was identified as the metabolic rift by Karl Marx, who identified the unequal exchange rate between energy and nutrients flowing from rural areas to feed urban cities that create effluent wastes degrading the planets ecological capital, such as loss in soil nutrient production. Energy conservation also leads to what is known as Jevon's paradox, where improvements in energy efficiency lowers the cost of production and leads to a rebound effect where rates of consumption and economic growth increases.

Recycling of plastics is more difficult, as most programs can't reach the necessary level of quality. Recycling of PVC often results in downcycling of the material, which means only products of lower quality standard can be made with the recycled material. A new approach which allows an equal level of quality is the Vinyloop process. It was used after the London Olympics 2012 to fulfill the PVC Policy.

 

For a recycling program to work, having a large, stable supply of recyclable material is crucial. Three legislative options have been used to create such a supply: mandatory recycling collection, container deposit legislation, and refuse bans. Mandatory collection laws set recycling targets for cities to aim for, usually in the form that a certain percentage of a material must be diverted from the city's waste stream by a target date. The city is then responsible for working to meet this target.

Home | History | Product Concept | Benefits | Target Market | Characteristics | Specifications
Clients | Distributors | Products |  Contact Us | Grants | News | Site Plan | Français