Homeecolotop recyclage_montreal
conservation of trash can extend the life of trash receptacle bins recycling cardboard recycling bin montreal extend the life of outdoor garbage container recycle garbage bin recycling bin recycling bin lids garbage and recycling can lids waste containers prolong the life of garbage bins
recycling bin lids
recycling bin lid
composting montreal
recovery of glass
recycling bin Montreal
Recycle bin

Recyclage montreal


recycle bin lids extend the life of outdoor garbage containers extend the life of waste containers compost quebec recycling cardboard outdoor garbage cans lid recovery garbage can lid extend the life of waste bins recycle garbage cans wastebaskets plastic recycling

Other studies have shown that recycling in itself is inefficient to perform the “decoupling” of economic development from the depletion of non-renewable raw materials that is necessary for sustainable development. The international transportation or recycle material flows through "...different trade networks of the three countries result in different flows, decay rates, and potential recycling returns." As global consumption of a natural resources grows, its depletion is inevitable. The best recycling can do is to delay, complete closure of material loops to achieve 100 percent recycling of nonrenewables is impossible as micro-trace materials dissipate into the environment causing severe damage to the planets ecosystems. Historically, this was identified as the metabolic rift by Karl Marx, who identified the unequal exchange rate between energy and nutrients flowing from rural areas to feed urban cities that create effluent wastes degrading the planets ecological capital, such as loss in soil nutrient production. Energy conservation also leads to what is known as Jevon's paradox, where improvements in energy efficiency lowers the cost of production and leads to a rebound effect where rates of consumption and economic growth increases.

Beverage bottles were recycled with a refundable deposit at some drink manufacturers in Great Britain and Ireland around 1800, notably Schweppes. An official recycling system with refundable deposits was established in Sweden for bottles in 1884 and aluminium beverage cans in 1982, by law, leading to a recycling rate for beverage containers of 84–99 percent depending on type, and average use of a glass bottle is over 20 refills.

 

In order to meet recyclers' needs while providing manufacturers a consistent, uniform system, a coding system is developed. The recycling code for plastics was introduced in 1988 by plastics industry through the Society of the Plastics Industry, Inc. Because municipal recycling programs traditionally have targeted packaging—primarily bottles and containers—the resin coding system offered a means of identifying the resin content of bottles and containers commonly found in the residential waste stream.

In a 1996 article for The New York Times, John Tierney argued that it costs more money to recycle the trash of New York City than it does to dispose of it in a landfill. Tierney argued that the recycling process employs people to do the additional waste disposal, sorting, inspecting, and many fees are often charged because the processing costs used to make the end product are often more than the profit from its sale.[59] Tierney also referenced a study conducted by the Solid Waste Association of North America (SWANA) that found in the six communities involved in the study, "all but one of the curbside recycling programs, and all the composting operations and waste-to-energy incinerators, increased the cost of waste disposal."

It is difficult to determine the amount of energy consumed or produced in waste disposal processes in broader ecological terms, where causal relations dissipate into complex networks of material and energy flow. For example, "cities do not follow all the strategies of ecosystem development. Biogeochemical paths become fairly straight relative to wild ecosystems, with very reduced recycling, resulting in large flows of waste and low total energy efficiencies. By contrast, in wild ecosystems, one population’s wastes are another population’s resources, and succession results in efficient exploitation of available resources. However, even modernized cities may still be in the earliest stages of a succession that may take centuries or millennia to complete.":720 How much energy is used in recycling also depends on the type of material being recycled and the process used to do so. Aluminium is generally agreed to use far less energy when recycled rather than being produced from scratch. The EPA states that "recycling aluminum cans, for example, saves 95 percent of the energy required to make the same amount of aluminum from its virgin source, bauxite." In 2009 more than half of all aluminium cans produced came from recycled aluminium.

Home | History | Product Concept | Benefits | Target Market | Characteristics | Specifications
Clients | Distributors | Products |  Contact Us | Grants | News | Site Plan | Français